

Mork Family Department of Chemical Engineering and Materials Science

Geophysical Monitoring of Reservoirs

Fred Aminzadeh SPE- LAS January 10, 2012

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- Applications
- USC Reservoir Monitoring Consortium (RMC)
- Closing

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- Applications
- USC Reservoir Monitoring Consortium
- Closing

Geophysical tools for reservoir monitoring

Geophysical technique	Physical property measured	Reservoir property inferred
4D surface seismic, VSP, X-well seismic	Changes in amplitude, arrival time, waveform	Fluid saturation, pressure changes
Microseismic or passive seismic	Rock shear failure w/ stress perturbations	Fluid flow pathways flow anisotropy
Borehole & surface EM measurements	Electrical resistivity changes	Saturation 4D changes

Borehole seismic (VSP) bridges the gap between logs & surface seismic

The Physics behind 4D Seismic

- Rock & fluid properties change over time
- Rock & fluid properties affect compressibility and shear strength
- Seismic waves deform rocks by compressing and shearing them

Seismic response changes over time

The Physics behind 4D Seismic (cont.)

- Time-lapse seismic response measured by differences in:
 - > local wave front amplitude/energy
 - > wave propagation velocity & travel time
 - > phase, frequency, impedance,

Z= (density x velocity)

other physical attributes...

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- Applications
- USC Reservoir Monitoring Consortium
- Closing

How does 4D seismic work?

- Record seismic data at different times
 What changed? Why?
 - Saturation oil-water displacement, gas expulsion, CO₂ injection
 - Pore pressure increases at injectors, decreases at producers
 - Temperature steam front movement
 - Porosity pressure depletion

Deployment of Geophysical Monitoring Tools (Teal South 4D study, GOM)

Ebrom et al. (1998)

Entralgo and Spitz (2001)

How does 4D seismic work? (cont.)

- Differencing time-lapse datasets tells us about fluid changes in the reservoir
 - Qualitative: Where did the changes take place?

CGGVeritas

– Quantitative: What changed exactly, and by how much?

4D seismic reservoir monitoring

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- Applications
- USC Reservoir Monitoring Consortium
- Closing

Dynamic Reservoir Model Building

4D Seismic Modeling Flow

 Vp, Vs, ρ

4D Modeling/Processing/Inversion

pressure-saturation inversion reservoir simulation, history matching

4D reservoir model

Modeled 4D data

4D field data

"Closing the Loop"

Modeled P & S impedances

P & S impedance inversion

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- Applications
- USC Reservoir Monitoring Consortium
- Closing

Microseismic monitoring

Microseismic Monitoring Applications

- Estimate large-scale permeability distribution
- Fracture stimulation optimization
 - pump rate
 - pump pressure,
 - well pattern optimization
 - intervals for multi-stage frac
- Identify areas of potential wellbore instability

Microseismic Monitoring Applications (cont.)

- Map migration paths in tertiary recovery operations (steam, CO₂) and fluid pressure fronts in real time
- Better understanding of fracture geometry and connectivity
- Determine if existing fractures are reactivated
- Identify reservoir compaction zones
- Determine stress orientation

- Depth conversion with 3D Seismic and Velocity volume for: Geosteering Well top information
- Real time decisions during hydraulic fracturing
 - Horizons Well top picks
 - Microseismic data analysis.
- Sonic derived mechanical properties provide insight to the correlation between log and seismic scale information.

Optimizing staging & perforation design in real time Reduces cost by eliminating stages, Maximizes the effective stimulation volume

Microseismic monitoring induced fractures

Aramco

Micro-seismic to Monitor Horizontal Well Stimulation

Outline

Geophysical methods & their sensitivities / applicability

- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- > Applications
- USC Reservoir Monitoring Consortium
- Closing

Applications

Porosity / saturation / permeability change
 CO₂ sequestration & monitoring
 Carbonates
 EOR – Life of field

Applications

Porosity / saturation / permeability change
 CO₂ sequestration & monitoring
 Carbonates
 EOR – Life of field

Time-lapse Saturation Inversion

Changes in Water Saturation

Time lapse surface TEM for monitoring permeability change, China field test:,

Apparent resistivitydata repeatability Resistivity differences: permeability; $low \rightarrow$ high

Difference of Apparent Resistivity at t=60ms (Nov.-July, 2006

Applications

Porosity / saturation / permeability change
 CO₂ sequestration & monitoring
 Carbonates
 EOR – Life of field

Monitoring CO₂ Injection

P-impedance along traverse ~10% decrease

JASER]

Courtesy Fugro

Monitoring CO₂ Injection Changes in Reservoir Properties

Courtesy Fugro

Applications

Porosity / saturation / permeability change
 CO₂ sequestration & monitoring
 Carbonates
 EOR – Life of field

Integrating Seismic, well logs, and EM

Seismic \rightarrow geologic structure \rightarrow resistivity log \rightarrow EM

Adopted from EMGS

Fluid displacement heterogeneity

Velocity map in a shale reservoir

Courtesy of TDGEO

Fluid phase from velocity anisotropy

Courtesy of TDGEO

Application of EM in carbonates (Ghawar field)

After Colombo et al., 2008 ourtesy of KMS Technologies

Applications

Porosity / saturation / permeability change
 CO₂ sequestration & monitoring
 Carbonates
 EOR – Life of field

Meren waterflood, Nigeria

Lumley et al. (1999)

Duri steam-flood, Indonesia

Sigit et al. (1999)

Life-of-field monitoring at Valhall

Data Acquisition and Preliminary reservoir model Barkved (2004)

Life-of-field monitoring at Valhall

Time6-Time1

Time8-Time1

Time10-Time1

Time 1: (pre-injection)

van Gestel et al. (2008)

CO2 Flooding in Monell field, WY

Time-Lapse 3D VSP Survey – 18 Month Amplitude Difference

Real-Time Processing of Reservoir Data Streams

Input Streams

Data Stream Processing Engine

Dynamic Reservoir Characterization

Outline

- Geophysical sensitivities
- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- > Applications
- USC Reservoir Monitoring Consortium
- Closing

Optimize Hydraulic	Physical Models to	MEQ to Map Reservoir
fracturing for shale	monitor reservoir fluid	Structure
Time lapse Petrophysics for RM	MEQ & Seismic Integration for Shale Reservoirs	Tomography Based Reservoir Modeling

RMC at a Glance

MEQ & Seismic Integration for Shale Reservoirs

Optimize Hydraulic	Physical Models to	MEQ to Map Reservoir
fracturing for shale	monitor reservoir fluid	Structure
Time lapse Petrophysics for RM		Tomography Based Reservoir Modeling

Applications

Fractured Reservoir

- •Tight sands
- •Shale oil and gas
- Co₂ Sequestration
- •Geothermal Reservoir

US GS, Geysers and

Overview

USC Viterbi School of Engineering

Property prediction

USC Viterbi School of Engineering

Velocity models from tomographic inversion

Improved p and s velocity models as a precursor to delineating anomalies and structures of interest and correlate velocity anomalies with fracture swarms and other reservoir properties of interest

Vs

Extensional Stress

Poisson's ratio

Hydrostatic Stress

Well + Seismic + MEQ

ANN porosity map (seismic attributes & well log data) with observed MEQ activity

Improved fracture models

Rock strength distribution

Update model with \uparrow consistency

USC Viterbi

School of Engineering

Integration of MEQ locations and fracture models

MEQ to Map Reservoir Structure

- Many geotechnical processes involve the injection of water or gas into the shallow crust.
- Examples: hydrofracking, carbon sequestration, geothermal stimulation.
- These processes often produce many earthquakes, most of which tend to be small (M≤4). Call this "stimulated seismicity"

USC Viterbi School of Engineering

Stimulated seismicity can be:

- "induced" if the energy is derived mainly from the injection process itself (by borehole pressure or by thermal contraction produced by cold-water)
- "triggered" if the energy is derived mainly from the release of stored tectonic strain through a mechanical or chemical process that reduces the effective coefficient of friction on fault planes.

- The size of induced events is limited by the size of the perturbed region. A large run-away event is unlikely.
- The size of triggered events is limited only by the size of faults in the region. A large run-away event is possible.
- Induced seismicity can be distinguished from triggered seismicity by the fractal dimension of the hypocenter distribution and the *b*-value in the Gutenberg-Richter frequency-magnitude relation.

Optimization of Hydraulic Fracturing

(a) uniform fracturing; (b) inner loop optimization of fracture locations and intensity;

(c) combined optimization of well trajectory and fracture design.

USC Viterbi

- Development of fracturing well trajectory optimization algorithm Development of fracture optimization algorithms to identify fracture intervals and intensity for a fixed well trajectory
- Integration of fracture well trajectory optimization and fracture interval/intensity optimization to develop a hierarchical optimization algorithm.
- Fine-tuning and sensitivity analysis to evaluate the performance of the developed algorithms under geologic uncertainty.
- Preliminary test cases to evaluate the suitability of developed methodology before application to benchmark models and field data.

hool of Engineering

Optimize Hydraulic fracturing for shale

Time lapse Petrophysics for RM MEQ & Seismic Integration for Shale Reservoirs MEQ to Map Reservoir Structure

Tomography Based Reservoir Modeling

Model design and data acquisition

Model design and data acquisition

USC Viterbi School of Engineering

Seismic attribute analysis

Some other differences between water and oil filled amplitudes.

Outline

- Geophysical sensitivities
- > 4D inversion for pressure, saturation, & permeabilities
- Integrated reservoir model updating & history matching
- Passive seismic for shale reservoir stimulation monitoring
- > Applications
- USC Reservoir Monitoring Consortium
- Closing

Closing

4D seismic helps monitor changes in reservoir
Value addition to model updating & history matching
Passive seismic helps monitoring well stimulation
Geophysics helps production optimization
Optimize EOR & reservoir management
RMC addresses many of the above

Make physical monitoring has the potential to work before large expenditure.

This presentation will be posted at RMC.USC.EDU