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Novel fracture zone identifier attribute using geophysical
and well log data for unconventional reservoirs

Debotyam Maity' and Fred Aminzadeh?

Abstract

We have characterized a promising geothermal prospect using an integrated approach involving microseis-
mic monitoring data, well logs, and 3D surface seismic data. We have used seismic as well as microseismic data
along with well logs to better predict the reservoir properties to try and analyze the reservoir for improved
mapping of natural and induced fractures. We used microseismic-derived velocity models for geomechanical
modeling and combined these geomechanical attributes with seismic and log-derived attributes for improved
fracture characterization of an unconventional reservoir. We have developed a workflow to integrate these data
to generate rock property estimates and identification of fracture zones within the reservoir. Specifically, we
introduce a new “meta-attribute” that we call the hybrid-fracture zone-identifier attribute (FZI). The FZI makes
use of elastic properties derived from microseismic as well as log-derived properties within an artificial neural
network framework. Temporal analysis of microseismic data can help us understand the changes in the elastic
properties with reservoir development. We demonstrate the value of using passive seismic data as a fracture

zone identification tool despite issues with data quality.

Introduction

Passive seismic as a tool for monitoring reservoirs
has become fairly routine in recent years. Two of the
more common applications include development of un-
conventional reservoirs such as geothermal systems,
tight gas fields, or oil reservoirs that require fluid injec-
tion, monitoring of CO, injection, and water and steam
flooding. The use of conventional seismic data for res-
ervoir characterization is a fairly well understood area
of study with multiattribute analysis. Seismic attributes
are evaluated based on observed changes in the seismic
signal because of various underlying physical phenome-
non. Elastic wave propagation through the subsurface
is influenced by structural as well as stratigraphic fea-
tures. Attributes provide specific geometric, kinematic,
geomechanical, dynamic, or structural measures of
these features. Conventional seismic attribute analysis
includes amplitude (for lithological contrasts, fluid con-
tent, and gross porosity), instantaneous frequency (for
bed thickness, fluid content, and fractured zones), co-
herency (to highlight discontinuities), envelope (for
bright spots, thin beds, and lateral discontinuities),
and impedance (for porosity, unconformities, and elas-
tic properties) to name a few. All of these attributes, as
well as many others, are extensively used today for vari-
ous reservoir characterization schemes (Taner et al.,
1979; Chopra and Marfurt, 2007b).

The concept of combining seismic attributes to de-
tect specific seismic anomalies by clustering analysis
was introduced by Aminzadeh and Chatterjee (1984).
Many other work to combine attributes through regres-
sion analysis, fuzzy -clustering, self-organizing net-
works, and weighted attributes, as well as through
other means are introduced by Russel et al. (1997),
Schuelke et al. (1998), Lashgari (1991), Walls et al.
(1999), Barnes (2000), and Chopra and Marfurt (2007a).

A new class of attributes, referred to as meta-attrib-
utes, is introduced by Aminzadeh (2003, 2005). Meta-
attributes (or hybrid attributes because we are using
the terminologies interchangeably) not only aggregate
different attributes but also combine the artificial intel-
ligence of an artificial neural network (ANN) with the
human intelligence of an interpreter (who provides in-
put to the training process of the ANN) to create an
attribute fit for a purpose. As described in Aminzadeh
(2003), we are looking at a set of computer algorithms
that are developed to search through data volumes
looking for specific types of anomalous sections in
the seismic data using carefully designed criteria or
“meta-attributes.” Meta-attributes are an aggregation
of several seismic attributes combined with the inter-
preter’s insight through a neural network to detect a
particular feature. A typical example would be Aminza-
deh and Connolly (2002) in which the gas chimney is
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Figure 1. Integrated workflow for reservoir characterization
— outline.

Figure 2. Fault map showing the Salton Trough as well as the study area in
question. The patterned lines show the spreading centers. SMG, Split Mountain
Gorge (modified from Crowell and Sylvester, 1979).
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the intended meta-attribute. Aminzadeh et al. (2005) use
the meta-attribute concept to derive the hydrocarbon
probability index from the AVO data. Likewise, Aminza-
deh and Brouwer (2006) extend the meta-attribute con-
cept to introduce a hybrid neurofuzzy workflow for
prospect identification and ranking by manipulating tra-
ditional seismic attributes.

Other recent studies have shown ways of combining
conventional seismic attributes with geometric and geo-
mechanical attributes to characterize unconventional
shale environments (Trinchero et al., 2013). Attribute
integration methods can range from simple corendering
techniques (Gupta et al., 2011) to complex neural net-
works-based property modeling approaches (Clifford
and Aminzadeh, 2011). Although conventional seismic
data acquisition is fairly common for reasonably big res-
ervoirs including large shale plays, they are seldom ac-
quired in small unconventional reservoir settings.
Moreover, the use of passive seismic monitoring is pri-
marily focused on understanding the fracturing process
and is underutilized as a tool for reservoir property pre-
diction. In this study, we have used seismic as well as
microseismic data along with well logs to better predict
the reservoir properties to try and analyze the reservoir
for improved mapping of natural and induced fractures
open to flow. We use microseismic derived velocity
models for geomechanical modeling and combine these
geomechanical attributes with seismic and log-derived
attributes for improved fracture characterization of an
unconventional reservoir. Figure 1 shows a basic
workflow outlining the various parts of the integrated
analysis scheme to provide an overview of the tech-
niques used.

We have applied the meta-attribute concept to a com-
plex geothermal field within a fluvial setting in a region
showing intense geologic activity. Our approach in-
volves simultaneous use of microseismic data, 3D seis-
mic data, and well logs. This is followed by integrated
data analysis and characterization methods with shared
results including fracture zone identification. Finally,
discontinuity and fractured zone map-
ping-based interpretations are used to
demonstrate their value in understand-
ing the reservoir behavior and optimiz-
ing overall productivity. Maity (2013)
provides for a more complete under-
standing of the data used and our ap-
proach.

Geologic setting

The geothermal field in question is lo-
cated in the Imperial Valley of Southern
California, which is a part of the Salton
Trough. The Salton Trough belongs to
the Gulf of California segment of the
Eastern Pacific Rise and forms a transi-
tion between the San Andreas Fault sys-
tem to the east and spreading ridge
complex to the northwest. Over millions
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of years, the Colorado River has carried and deposited
sediments into the system creating the current sedimen-
tary geologic setting. Figure 2 shows the setting in some
detail, highlighting the major fault systems at play close
to the study area as well as the spreading zone.

The deltaic sedimentary sequence consists of alter-
nating sand, silts, and clays, which extend beyond a
depth of 15,000 ft. At shallower depths, the sediments
encountered are primarily nonmarine sands and clays
that are highly unconsolidated. The deeper formation
is composed of marine deposits of sandstones and mud-
stones, which become more consolidated with depth
because of compaction and cementation with carbon-
ates and silica. Very low matrix permeability is ob-
served at deeper intervals, and the corresponding
temperature profiles suggest that permeability is re-
lated to pore-space cementation by fluid circulation.
The focus of this investigation is the shallower reservoir
above 5000 ft where the reservoir porosities and perme-
abilities are substantially higher. The resource in ques-
tion is a hydrothermal system (no in situ or produced
steam) with temperatures in the reservoir ranging from
300°F to 400°F and brines of moderate salinity (up to
40,000 ppm). The sands encountered in the reservoir
are very fine grained, well sorted, and relatively clean.
However, one of the major unanswered questions is
that of continuity of the shallower sands (which is a re-
sult of active geologic and deltaic environment). We
also know that the reservoir is highly fractured (Matlick
and Jayne, 2008) and their distribution is the key in
understanding productivity behavior and injectivity is-
sues. This has led to a highly challenging play with ma-
jor unresolved issues such as abnormal pressure
decline and flow throughput issues (P. Walsh, personal
communication, 2012). The primary objective of this
study is to validate the potential use of the newly de-
fined hybrid attribute in characterizing the observed
reservoir behavior.

3D seismic data analysis

A 3D surface seismic survey consist-
ing of 31 north-south receiver lines and
12 east-west source lines with east—
west orientation was acquired over the
target in 2010. The sweep frequency
range used was from 4 to 88 Hz, and
the sweep length was 8 s (Figure 3).
The 3D seismic data are used to identify
major discontinuity features and other
estimates including log-derived prop-
erty volumes for our analysis. Acoustic
impedance is used as a secondary con-
straint for improving the resolution of
the Vp and Vg models using the sequen-
tial Gaussian cosimulation algorithm as .
discussed in the next section. Figure 4 ~115.65
shows the seismic cross section and dis-
continuity attribute at referenced inline
and crossline locations. The small range
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of seismic survey limits the comprehensive illumination
of the subsurface environment. The observed disconti-
nuity over the entire survey is caused by loosely bound
alluvial sediments. This unconsolidation leads to re-
duced spatial continuity making the process of picking
horizons highly challenging.

Well logs are used to obtain seismic to well ties to do
a preliminary time-to-depth conversion after undertak-
ing the initial data processing and conditioning. Two
wells with available sonic logs are used to obtain a gen-
eralized power law relationship between traveltime and
resistivity (similar to Faust, 1953) in which the con-
stants are computed through regression analysis of
the available log data. This relation is in turn used
within other wells to obtain pseudo-sonic logs (Rudman
et al., 1976). Figure 5 shows a crossplot of actual and
pseudo-sonic log for one of the two control wells with
available log data for reference. The logs obtained are
then combined with density data to generate impedance
logs. The reflection coefficients obtained are then con-
volved with a selected seismic wavelet to obtain a syn-
thetic seismic trace. The synthetic trace is compared
with the actual seismic trace extracted from a volume
around the corresponding well track, and major reflec-
tors are matched to obtain acceptable ties for all avail-
able wells.

The depth-stretched seismic volume and logs are
next used to predict reservoir log properties such
as porosity and density using an ANN-based ap-
proach. Seismic attributes (Chopra and Marfurt,
2007a) are calculated from the seismic amplitude
data and used as input in a supervised neural network
framework, which attempts to predict the desired
output property. The input parameters used for prop-
erty prediction include inverted impedance, Vp/Vg
ratio, bulk modulus, and Poisson’s ratio. Figure 6
shows sample properties at reference depth (1 km)
estimated using this methodology with superimposed
well locations for reference. These properties are
useful input to our fracture zone characterization
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Figure 3. Integrated display of survey area with location of microseismic re-
cording stations, wells and 3D seismic survey (receiver and shot locations).
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framework and help in obtaining elastic properties
using inverted wave velocities. We use colored inver-
sion (Lancaster and Whitcombe, 2000) to convert
seismic data to acoustic impedance. Pseudologs from
properties estimated using ANN-based modeling are
compared with actual logs to validate the property es-
timates before their use in characterization work-
flows. We use Laplacian (edge-enhancement methods
based on dip steered second-order spatial derivatives
[Jahne, 1993]) and amplitude variance (Bakker et al.,
1999) to evaluate discontinuities as shown in Figure 6.
These discontinuity maps are used to support inter-
pretations made using the derived attributes to im-
prove our understanding of reservoir behavior.

Passive seismic data analysis

A passive seismic array placed in shallow boreholes
was used to continuously monitor the operations of the
field since 2008. The data acquisition array for the data
used in this study included five recording stations each
recording 3C data as shown in Figure 3.

Microseismic data processing involves multiple steps
starting with the use of a simple energy ratio-based trig-
gering scheme to identify potential events in the passive
seismic data sets by comparing with predefined normal-
ized thresholds. The triggered data are appropriately
time stamped and run through an advanced neural net-
work-based autopicker (Maity et al., 2014). These picks
are inverted for location and velocity. A double-differ-
ence algorithm (Waldhauser and Ellsworth, 2000) is

used to obtain hypocentral locations based on the event
arrival time differentials based on generated P- and S-
wave arrival data as well as the initial local crustal
model for the study area, which is sourced from
Southern California Earthquake Data Center (SCEDC,
2013). Figure 7 shows the spatial distribution of the hy-
pocenters as they relate to the injector/producer loca-
tions. Because of very few local passive seismic
sensors, the ability to accurately resolve source param-
eters for most events was low with around 5% of the
actual triggers being used for further analysis. Conse-
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Figure 5. Crossplot of actual and resistivity derived pseudo-
sonic log as obtained through regression analysis.

Figure 4. Time-migrated seismic amplitude as well as discontinuity attributes along vertical slices (AA’, BB’, CC’, and DD").
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quently, very few events within the actual study area
could be adequately resolved. Furthermore, some of
the larger events fall outside of the actual study volume.
From the regional geologic setting, we know that there
are some major faults extending southeast of study
area, which could be causing the seismicity (either
natural or triggered from water injection). Despite
the limited use of the hypocenters in better understand-
ing the interaction of fluid injection and the subsurface
features, we look at the potential of using inverted
velocities to better define the perturbed zone. The hypo-
centers obtained are used to generate improved veloc-
ity models by using simultaneous P- and S-inversion
algorithms (Thurber, 1993). This algorithm uses the
P- and S-wave information along with preliminary
velocity model estimates and progressively iterates
over all of the traveltime data available to provide final
hypocentral and velocity estimates. The cell size used in
tomography is approximately 15 times larger than the

a)16!)~

140 -

120"

100 L
80 - . .
60 -

40 -
20-

Inline

20 40 60 80 100
Crossline

20 40 60 80 100

Crossline Crossline
e)
150
1.0
100
s 2
=
0.0

20 40 60 80 100
Crossline

20 40 60 80 100

20 40 60 80 100
Crossline

grid size for 3D seismic data. One of the guiding reasons
behind lower resolution was the lack of adequate pas-
sive seismic data for accurate inversion/tomography
workflows at high resolutions. With better data quality
(resulting from more robust survey designs), the reso-
lution and accuracy of the tomography results could be
improved. Some elements of optimal survey design in-
clude reservoir controls such as structural/stratigraphic
features, data quality/processing requirements, redun-
dancy, noise, instrumentation, etc. The reader is en-
couraged to refer available literature (Curtis et al.,
2004; Maity et al., 2013) on optimizing passive seismic
surveys aimed at imaging local seismicity.

After adequate iterative runs involving the removal
of bad phase arrival data and improving coverage by
considering an adequate number of events based on
known sensor array spread, the final velocity models
are obtained and used as a baseline estimate for the
area of interest. We then use Stanford Geostatistical

Figure 6. Depth slices at Z = 1 km through
(b) density, (c) porosity, (d) edge-enhanced,
and (e) edge-preserved seismic amplitude vol-
umes. Panel (a) indicates well control (white,
injectors; and black, producers).
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Modeling Software (Remy et al., 2009) to populate the
study area by using sequential Gaussian cosimulation
algorithm involving seismic derived impedance as the
secondary data to obtain high-resolution P- and S-wave
velocity estimates. We validate the use of acoustic
impedance by looking for correlations with phase
velocities at multiple zones of interest. Enhancement
in resolution of wave velocities is based on the simula-
tion technique used and a relatively higher mismatch is
expected because of the poor quality of passive seismic
data available for this study. As highlighted earlier, with
improved data quality, we should get improved tomo-
graphic resolution allowing for better property esti-
mates. We calculate simulation uncertainty using
statistical analysis of the final velocity realizations. This
is done by generating 36 realizations and observing the
standard deviations at each evaluation point. The final
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Figure 7. Event hypocenter distribution (size of dots represents the event mag-
nitudes). We can clearly observe that most events fall outside the injection area
indicating very high local seismicity near Salton Trough. The green inserts indi-

cate approximate location of basement.
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Figure 8. Depth slices at Z = 1 km through (a) Vp, (b) Vp
simulation error, (c¢) Vg, and (d) Vg simulation error volumes.
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selection of Vp and Vg models is based on least-squares
error evaluation using the sparse velocity field input at
original locations for reference. The simulation uncer-
tainty is combined with the uncertainty derived from
the resolution of the velocity inversion result. The res-
olution of the model is computed using the resolution
and covariance matrix computed with the SimulPS al-
gorithm. Figure 8 shows representative Vp and Vg maps
and associated estimation error at a reference depth of
1 km and Figure 9 shows the correlation obtained with
VP at two separate depths (0.5 and 1.0 km) for
reference.

The Vp and Vg can be related to elastic properties
including bulk modulus, shear modulus, and Poisson’s
ratio, and these can be used to characterize zones of
interest using available frameworks to relate the geo-
physical and geomechanical properties with reservoir
attributes such as fractures (Toksoz
and Johnston, 1981). Estimation of rock
properties based on microseismic-de-
rived wave velocity estimates has been
demonstrated as a viable tool for reser-
voir characterization (Maity and Amin-
zadeh, 2012). We know that Vp and Vg
can be used to derive Lamé’s parameters
(Mavko et al., 2003), which in turn are
used to estimate the inertial properties
of the rock (Beer et al., 2009). We can
further calculate estimates of exten-
sional and hydrostatic stress directly us-
ing Vp and Vg estimates obtained earlier
(Toks6z and Johnston, 1981). Exten-
sional stress tends to pull rocks apart,
whereas hydrostatic stress is a confining
stress that is compressive in nature.

There are several observations that
can be made using these property esti-
mates, particularly by combining with
properties estimated using conventional seismic data.
The applicability of traditional poroelastic theory in
the field holds because of the sedimentary nature of
the geothermal reservoir in question and relatively
low temperatures involved because of the absence of
steam. The closing of small fractures because of in-
creasing pressure with depth or cementation effects
should cause an increase in seismic velocity. Fractur-
ing, chemical alteration, and extreme temperature gra-
dients, etc., can cause a reduction in seismic velocities.
Fluid saturation tends to reduce Vg and enhance Vp/Vg
and Poisson’s ratio. For highly fractured gas-saturated
zones, we can generally expect low Vp and Vg values
and reduced Vp/Vg velocity ratios. These and other ef-
fects such as the effect of fractures on porosities, acous-
tic impedance, bulk densities, etc., can be used in an
integrated manner to identify fractured zones or other
intervals of interest. Figure 10 shows sample distribu-
tions for some of these properties mapped at reference
depth of 1.0 km.
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Integrated reservoir characterization

The property estimates obtained from microseismic
data analysis as well as those obtained from 3D seismic
data using a neural network-based well log property
prediction workflow can be combined based on the ex-
pected target zone observations such as high porosity,
low density, and low impedance values. Moreover, elas-
tic rock properties as well as stress observations can be
used to interpret possible zones of fracturing. Low
Vp/Vg anomalies and low Vp anomalies could poten-
tially be fracture induced. Moreover, low extensional
stress anomalies indicate open fracture zones (Berge
et al., 2001; Martakis et al., 2006). Each of these individ-
ual properties by themselves may not be indicative of
fracturing with a high degree of certainty; however,
when they are combined together into newly devised
hybrid fracture zone identifier (FZI) attributes, they
are postulated to provide reasonable indications of
porous and fractured reservoir. It should be noted that
we consider these as hybrid attributes because they use
data from different sources (passive and reflection seis-
mic as well as well logs). Although there could be many
ways of designing such an attribute, we use a simple
relationship defined as a nonlinear combination of in-
put properties modeled using an ANN. The model
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Figure 9. Scaled impedance correlated with compressional
phase velocity with sampling points extracted from
(@) Z =0.5 km and (b) Z = 1.0 km. A relatively high correla-
tion provides confidence in the use of impedance as the sec-
ondary constraint in cosimulation runs.

can be represented as a function of normalized input
attributes denoted by the subscript n:

FZI :f(¢n’ Pn> Zan VS’/L’ VPn’ VEVL)? (1)

where ¢,, is the porosity, p,, is the density, Zp, is the
impedance, Vp, and Vg, indicate the P- and S-wave
velocities, and Vg, is the extensional velocity. These
attributes were carefully selected from a broader set
of attributes based on the least observed error when
tested with data from the blind validation well. Porosity
and density are effective properties derived from seis-
mic and therefore should show clear variations in the
presence of fractures. Velocities used are also critical
because lower values indicate attenuation effects
caused by open fluid-filled fractures. Some other attrib-
utes tested but not used for the final model include bulk
modulus, Poisson’s ratio, and tangential weakness
(anisotropy) estimates. This was because they resulted
in deterioration of validation results for corresponding
models. This is most likely a result of available data
quality and the fact that rock properties are likely
harder to accurately predict compared to log properties
because of available well constraints. Once the feature-
scaled input attributes are available, training and vali-
dation data are extracted based on conductive and par-
tially conductive fracture logs obtained from image log
analysis.

Although the modeling for FZI can be carried out us-
ing different neural network modeling schemes, we use
a simple multilayered normalized radial basis function
neural network (RBFNN) as shown in Figure 11. Nor-
malization allows for improved generalization of the
network and provides for an excellent classifier:
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Figure 10. Depth slices at Z = 1 km through (a) bulk modu-
lus, (b) Poisson’s ratio, (c) extensional stress, and (d) hydro-
static stress volumes.
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We use a Gaussian basis function with a bias “b” en-
suring stability in evaluation and spread defining the se-
lectivity of the functions. Here, ¢; defines the activation
function at ith input node for input x, w; is the associ-
ated weight of the node, and x; represents the function
centroid value. A sigmoid function is used at the output
node to make sure that the results are range bound (be-
tween zero and one). It should be noted that there are
other algorithms such as hybrid neurofuzzy or neuroe-
volutionary methods that can be used to obtain similar

Figure 11. RBFNN design used for generat-
ing the FZI attribute. Inputs used (normalized
phase velocities, extensional stress, porosity,
impedance, and density) are derived from mi-
croseismic and seismic data analysis. S

target-zone or fractured-zone identification prop-
erties including associated prediction uncertainties.
An exhaustive look at various algorithms and a com-
parative study on which gives the best results has
not been conducted because of the underlying data
quality issues associated with available data. Figure 12
shows sample training data used in this study as well
as training performance for the neural network before
application of the trained model on the entire study
volume.

Before evaluating the properties and making inter-
pretations, zones showing very high uncertainties are
trimmed based on simulation and inversion uncertain-
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ties. Figure 13 shows the two evaluated uncertainty vol-
umes for the same reference depth of 1 km. The final
uncertainty is calculated by combining the normalized
values from the simulation and inversion uncertainty
estimates and the attribute is defined at locations where
the uncertainty measure is low based on a threshold
cutoff defined at the seventh quantile of the final un-
certainty map. Figure 14 shows the distribution of the
decimated FZI volume based on the cutoff with well in-
serts for reference. It should be noted that RBFNN is
a characterization algorithm and the results show the
probability of fractured zone presence through a clas-
sification value between zero and one.

Fracture zones from image log analysis not used for
the neural network design are used to validate the final
models. The inline and crossline projections shown in
Figures 15 and 16 highlight the match obtained for the
testing and validation case through the distribution of
the FZI attribute at the well location. After the derived
FZI model has been validated, we can use the attribute
volume to identify other potential zones of interest that
may hold prospects for future development or could
help understand the reservoir behavior. It is important
to note that the FZI attribute is qualitative and indicative
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20 40 60 80 100

20 40 60 80 100
Crossline T
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Figure 13. (a) Normalized tomographic inversion error and
(b) normalized simulation error at reference depth (1 km)
used to obtain uncertainties and to calculate property estima-
tion cutoffs.
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Figure 14. FZI attribute distribution in 3D with well loca-
tions. AA’ (BB’) shows the location of training well and CC
" (DD’) inserts show the location of the test well.
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of potential fractured zones that could be of interest. It
is necessary to validate the observations made by using
other independent parameters such as the behavior of
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Figure 15. FZI attribute vertical slices along AA’ and BB’
through volume associated with the training well (data from
logs used in ANN model design). Arrows indicate the location
of high FZI values that match with known intervals showing
fractures (blue inserts) over the green well tracks.
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Figure 16. FZI attribute vertical slices along CC’ and DD’
through volume including the validation well with fractured
zone interpreted from image logs. The projections show a high
attribute value close to the fractured intervals (blue inserts)
over the green well tracks.
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other indicative properties and actual field data. We
highlight the potential use of this attribute to better
understand well behavior. Figure 17 shows small sub-
sections from the FZI volume to highlight the distribu-
tion of the attribute close to four close wells of interest
shown in Figure 17a. We observe from the evaluated
property close to the wellbores that high FZI attributes
show up at two depths of interest for three of the wells
whereas for the fourth well, the lack of open fractures
as interpreted through FZI attribute and the lack of ma-
jor discontinuity close to the zone of interest could in-
dicate the primary reason for low observed throughput
for that producer. Similar analysis and interpretation
can be carried out in zones away from the control wells.
However, because many of the properties used in char-
acterization are log derived, the confidence in the val-
ues at substantial distances from the wellbore are low
and such interpretations could be prone to significant
errors.

Because we have discussed of the potential for
studying lateral connectivity, we carry out connectivity
analysis by incorporating multiple properties concur-
rently in the same displays for specific depths of inter-

Figure 17. The near-wellbore distribution of a)
the FZI attributes shown in (b) for producer A,

(c¢) for injector B, (d) for producer C, and (e)

for producer D with panel (a) showing the lo-

cation of wells.

est. In this case study, the producing zones were
relatively shallow with significant unconsolidation
because of loosely bound alluvial sediments created
by the spreading zone and discontinuities because of
an active geologic environment. This has created a ma-
jor challenge in the picking of horizons due to the lack
of spatial continuity. To address these issues, the maxi-
mized properties of greater than 10-m depth windows
were used in subsequent integrated analysis. Figure 18
shows potential reservoir connectivity interpretations
based on discontinuity from edge-enhanced or edge-
preserved seismic attributes (contour map), the exten-
sional stress gradient (arrow map), as well as the FZI
attribute (variable density map). Figure 18a shows a
sharp change in the stress gradient close to major dis-
continuity. We also observe high FZI values on both
flanks of the discontinuity indicating potential contribu-
tion of fractured zone falling on the left flank of the dis-
continuity to the well productivity. The high FZI zone on
the right flank could be contributing depending on the
nature of the discontinuity, i.e., communicating or oth-
erwise. Figure 18b shows high fracture probability only
on one flank of the observed discontinuity close to the
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Figure 18. (a) Integrated (overlay) display at depth slice of
Z =1 km showing discontinuity (contour plot), FZI (variable
density plot), and extensional stress gradient (vector plot) vol-
umes close to production (red) and injection (green) wells.
The blue inserts show the location of the four zones (b, c,
d, and e). The green arrows indicate the discontinuity boun-
dary, and the blue arrows indicate the change in the stress
gradient close to the identified boundary.

wellbore of interest, and this could indicate the failure
of injection wells to impact the other flank of the dis-
continuity, which could be because of fluid bypass or
presence of noncommunicating fault. Figure 18c shows
very low fracture probability close to the well of inter-
est indicating flow dominated by discontinuities includ-
ing major faulting close to the wellbore. Figure 18d
shows highly fractured zone flanked by major disconti-
nuity boundaries contributing to well productivity. We
note that based on the simulation and inversion uncer-
tainties, we expect all of our interpretations to hold be-
cause the said uncertainties are not very high at the four
locations highlighted. However, among these four loca-
tions, location III shows the maximum mean uncer-
tainty and therefore the corresponding interpretations
can be prone to the most error.

Conclusions

Temporal analysis of microseismic data can help us
understand the changes in the elastic properties with
reservoir development. We have successfully demon-
strated the potential for using microseismic data to gen-
erate usable rock property estimates, which in addition
to seismic-derived properties can provide a framework
for fracture-zone identification and characterization.
This method can also be applied for other unconven-
tional reservoir settings, and valuable information ob-
tained from microseismic data can be of use to
characterize the reservoir in question. Although we
have developed a framework for fracture-zone identifi-
cation, this method can easily be used for other types of
characterization workflows including lithology, fluid
type, fracture aperture, etc. Moreover, additional infor-
mation such as fluid flow (based on flow models) and
geologic models can also be integrated as additional
constraints into the property models. The method also
provides a framework for time-lapse fracture charac-
terization for the field by potentially making use of tem-
porally segmented catalogs. It is important to have a
well-designed microseismic data acquisition scheme
for useful application of the proposed workflow be-
cause the lack of adequate coverage and good-quality
microseismic data place a major limitation on the final
results obtained in this study. Such design issues and
their impact on the final property volumes and interpre-
tations will be looked into in the future.
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