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Abstract Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in
regions where background rates are low but are difficult to detect in seismically active regions. We present
a novel method to identify likely induced seismicity in tectonically active regions based on short-range
spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches
through the entire parameter space of injection rate thresholds and determines the statistical significance
of correlated changes in injection and seismicity rates. Applying our method to Kern County, central
California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes
to seismicity in four different cases. Three of these are connected to earthquake sequences with events
above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least
15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern
County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter
b values of ∼0.6–0.7 and at times systematic migration patterns characteristic for a diffusive process.
Our results show that injection-induced pressure perturbations can influence seismic activity at distances
of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local
geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically
robust assessment of likely injection-induced seismicity within a large, tectonically active region.

1. Introduction

The dramatic increase in the amount of wastewater that is produced as by-product of reservoir stimulation
and hydrocarbon extraction is a growing concern for earthquake hazard in the U.S. Much of this wastewater
is reinjected into high permeable formations via wastewater disposal (WD) wells, at times leading to fault slip
and noticeable seismic activity [e.g., Ellsworth, 2013; Frohlich and Brunt, 2013]. Most major oil fields in central
California exhibited a rapid increase in fluid injection rates by more than a factor of 2 between 2001 and 2013
(Figure 1), but potential seismogenic consequences have not been studied up to now. At a regional scale
the number of earthquakes above M2 in central California shows no apparent correlation to the change in
injection rates (Figure 1). The purpose of this study is to investigate whether small-scale induced earthquake
sequences exist, hidden within high-background seismicity rates (𝜆̇0). (Note that the term “induced” in our
study implies an anthropogenic component involved in a seismicity sequence. A clear distinction between
triggering and inducing earthquakes is not attempted here. A more extensive discussion on earthquake
triggering and contributions from different types of forcing is provided in section 6.4.)

Devising a systematic method for the detection of induced seismicity is complicated by the incomplete under-
standing of when and how fluid injection operations induce earthquakes. Induced seismicity is commonly
assumed to be a result of pore pressure increase [Evans, 1966; Healy et al., 1968; Raleigh et al., 1976; Kim,
2013], poroelastic loading [Segall et al., 1994], elastic stress changes resulting from large volumes of injected
and extracted fluids [Segall, 1989], or a combination of these effects. In addition, several studies suggest that
well operational parameters significantly influence the potential of inducing earthquakes. These parameters
include injection rates [Frohlich, 2012], wellhead pressures [Keranen et al., 2013], total injection volumes per
well and formation [McGarr, 2014], and net production rates [Brodsky and Lajoie, 2013]. Local crustal conditions
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Figure 1. Comparison of seismic activity above M2 between central California (red curve) and the central U.S.
(green curve). The dashed lines represent the average seismicity rates before 2001, and the blue curve shows the
cumulative wastewater injection rate in millions of barrels (Mbbl instead of industry-standard MMbbl) in central
California. Major historic earthquakes in greater Kern County after 1980 are highlighted by arrows and include the
1983 Mw6.4 Coalinga, the 2004 Mw6.0 Parkfield and the 2005 Mw4.6 Wheeler Ridge earthquakes. The cumulative
earthquake numbers for central California exclude the areas of the Coalinga and Parkfield main shock and aftershocks.
Many oilfields in central California show a strong increase in injection activity after ∼2001, but an increase in seismic
activity is conspicuously absent.

[Frohlich and Brunt, 2013; van der Elst et al., 2013], the presence of critically stressed faults [Deichmann and
Giardini, 2009], and static stress triggering [Keranen et al., 2013; Sumy et al., 2014] may further contribute to
injection-related seismic hazard. More recently, reports of likely induced earthquakes due to high-volume fluid
injection into vertically confined aquifers above basement lithological units are becoming more numerous
[e.g., Horton, 2012; Kim, 2013; Keranen et al., 2013].

Fluid injection and migration may occur over long periods and affect large areas thereby altering regional
forcing rates and principal stress orientations [Hainzl and Ogata, 2005; Martínez-Garzón et al., 2013; Schoenball
et al., 2014]. The likelihood of inducing earthquakes may be further enhanced if fluids can migrate beyond the
intended geological formation [Kim, 2013; Keranen et al., 2013].

Many previous studies focused on qualitative criteria for the identification of injection-induced seismic events
in areas with low long-term background seismicity rates such as the central U.S. [e.g., Davis and Frohlich, 1993;
Frohlich, 2012; Frohlich and Brunt, 2013; Keranen et al., 2013; Rubinstein et al., 2014]. These criteria include the
spatial-temporal proximity between injection and seismic activity (including depth) and a noticeable change
in seismicity rates. In California, only few studies attempted to link earthquake activity to fluid injection that
was not associated with geothermal reservoirs [e.g., Teng et al., 1973; Kanamori and Hauksson, 1992]. Extensive
injection operations and high-seismicity rates within the last ∼40 years make central California an excellent
location to expand on and quantify previously suggested criteria for the detection of induced events.

This study is structured as follows: We first provide on overview of tectonic setting and utilized data sets.
We then perform an exploratory examination of seismicity and injection data to identify injection patterns
that can be parameterized for an automated analysis. We describe a new method for a uniform, quantitative
assessment of potentially induced seismicity and apply it to Kern County, central CA. Lastly, we show the
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Figure 2. Seismicity above M3 (squares and stars), faults (red lines), and oilfields (green polygons) within San Joaquin
Basin. Major faults include the Wheeler Ridge (WRF), Pleito (PF), Garlock (GF), White Wolf (WWF), and Breckenridge
faults (BRF) as well as the Parkfield (SAF-P) and Carrizo (SAF-C) segment of the San Andreas Fault. The three largest
earthquakes (red beach balls) are the 1952 Mw7.5 Kern County (KCE), the 2004 Mw6.0 Parkfield (PFE), and the 1983
Mw6.4 Coalinga event (CLE). The eight regions with M> 3 earthquakes close to active oil fields are highlighted by blue
circles ( Ed: Edison, Kr: Kern River, Bv: Bellevue, Lh: Lost Hills, Eh: Elk Hills, Bu: Buena Vista, Ms: Midway-Sunset, and Tj:
Tejon). Magnitudes here and in the following figures are local magnitudes. The following analysis is limited to the area
of Kern County within the red polygon. The larger region in this figure is displayed to capture some of the major historic
seismic activity.

migration characteristics and frequency-magnitude distributions of likely induced seismicity sequences
identified with our method.

2. Tectonic Setting and Data

Our study is focused on central California and includes the southern San Joaquin basin as well as seismically
active faults to the west, east, and south of the basin. The tectonic deformation west of the basin is dominated
by strike-slip faulting along the San Andreas Fault, while the east shows mainly normal faulting associated with
the Breckenridge Fault. The tectonics south of the basin are characterized by a series of strike-slip and thrust
faults, including the Wheeler Ridge, Pleito, and White Wolf faults [e.g., Hardebeck, 2006; Yang and Hauksson,
2013; Unruh et al., 2014]. The latter produced the largest-magnitude earthquake within the study area, the
1952 Mw7.5 Kern County event (Figure 2). The recent, larger magnitude earthquakes to the north and south of
the basin, none of which substantially changed the long-term background seismicity rates within the basin,
are highlighted in Figure 1.

We analyzed the Advanced National Seismic System earthquake (ANSS) catalog between 1975 and 2014
which includes ∼17,000 events from both the Southern and the Northern California Seismic Networks. The
completeness magnitude, Mc, of the ANSS catalog is ∼2.0 within the region, determined by inverting for the
lower magnitude cutoff that minimizes the misfit between observed and modeled power law distributions
[Clauset et al., 2009; Goebel et al., 2014a]. Mc varies in space and time, likely reaching higher values to the
north and within the central part of the basin where the station density is low. However, the influence of Mc

variations on the present study is small, because we compare relative changes in seismicity characteristics on
small spatial-temporal scales as discussed below.
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In addition to the ANSS catalog, we also use the waveform-relocated catalog by Hauksson et al. [2012] to obtain
more accurate relative location uncertainties and focal depth estimates in areas with higher-station density
south of the San Joaquin basin. Within the basin, large azimuthal gaps and event-station distances complicate
depth estimates which is discussed in more detail in section 5 of Text S1 in the supporting information.

In the following, we correlate changes in seismicity and fluid injection rates (V̇inj) in wastewater disposal (WD)
wells. The latter have been archived by the Division of Oil, Gas, and Geothermal Resources (DOGGR) of the
California Department of Conservation since 1977 [CA Department of Conservation, 2012]. In addition to V̇inj,
the DOGGR also archives wellhead pressures. The pressure data were not included in the present study for two
reasons: (1) The wellhead pressure record is fragmentary and the statistical basis of the monthly documented
values are not disclosed by the well operator and may vary for different wells. (2) The wellhead pressures
may not be representative of reservoir pressures which are strongly influenced by structural heterogeneity
[e.g., Hsieh and Bredehoeft, 1981].

The present analysis encompasses ∼1400 WD wells in the study area south of the Kern county border
(see Figure 2). Kern County is the largest oil-producing county in California, contributing more than 75% of
California’s total oil production and hosting more than 80% of the production and hydraulically fractured
wells. Here each barrel of produced oil is accompanied by ∼5–15 barrels of produced water highlighting
that large volumes of wastewater have to be reinjected regularly [CA Department of Conservation, 2012]. In
addition, water disposal can also include fluids from secondary reservoir stimulation like hydraulic fracturing.
In the following, V̇inj is given in thousands of barrel per month (kbbl/month), and 1 kbbl/month is equivalent
to ≈160 m3/month.

3. Initial Observations of M>3 Earthquakes Close to Fluid Injection Wells

We performed a preliminary, exploratory examination of the injection and seismicity data resulting in an initial
set of possibly induced earthquakes in Kern County. This preliminary data set was then used to guide the
formulation of a more rigorous identification algorithm in section 4. For the initial and following analysis, we
chose earthquake sequences containing events above a target magnitude of MT=3, which are events that
can be felt by the nearby population.

During the exploratory data examination, we identified eight regions containing earthquakes above MT with
epicenters located within oil field boundaries or within a 10 km radius of active injection wells (Figure 2).
For each earthquake above MT, we determined whether a well within 10 km of the epicenters had fluid injec-
tion rates (V̇inj) above 100 kbbl/month at the time of the event. The choice for the initial injection rate threshold
of 100 kbbl/month was guided by previous observations of likely induced seismicity [e.g., Frohlich, 2012].
We then visually examined the time series for possible correlations between seismicity rates (𝜆̇) within a 10 km
radius from the well and V̇inj. This examination revealed a variety of episodes of changes in injection rates
within the spatiotemporal proximity of seismic activity, which generally showed two types of characteristics.

1. We observed earthquakes above MT that were associated with local injection maxima (e.g., in 1991 and
2000 in Figure 3a). These maxima in injection rates were preceded by months to years of sustained increase
in injection rates. In addition, one region showed a long-term positive correlations between 𝜆̇ and V̇inj

superimposed on the short-term correlation (Figure 3b).
2. We observed seismic activity close to injection sites with abrupt jumps in V̇inj without long-term sustained

increase (Figure 4). Such a site is for example located at the southern end of the Lost Hills oil field which in
turn is located to the northwest of Kern County (Lh in Figure 2). The injection well Lh was active between
1986 and 1995 and displays a strong short-term correlation between a rapid increase in injection rates in
February 1988 and a ML4.2 earthquake sequence that occurred at a distance of less than ∼0.5 to 1.5 km on
22 February 1988.

In the following, we use these preliminary observations to guide the formulation of a more rigorous identifi-
cation algorithm. This algorithm searches through the entire parameter space of injection rate thresholds.

4. Objective Induced Seismicity Correlation Method
4.1. Main Concepts and Criteria of Correlation Method
We developed a set of rigorous statistical measures that quantify the significance of short-range spatio-
temporal correlations between injection and seismicity rate changes. The method developed here is referred
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Figure 3. (a) Injection rates, V̇inj (blue), and seismicity rates, 𝜆̇ (black), for events above M2 and within 10 km of the well
as well as events above M2.5 (colored squares). The vertical positions of the squares correspond to relative differences
in magnitudes. 𝜆̇ and V̇inj display a noticeable long-term correlation. (b) Temporal variations in cross-correlation
coefficients for V̇inj and 𝜆̇ within a sliding time window of 2 years and a 10 km radius from injection site Bv in Figure 2.
Higher-frequency variations in seismicity and injection rates were removed using a five-point median filter, prior to
correlating the two time series.

Figure 4. Injection rates (blue), cumulative earthquake number (black), and earthquake magnitudes (colored squares)
within a 10 km radius of injection well Lh. (See also Figure 10c for short-term behavior close to injection).
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Table 1. Identification Criteria for Likely Induced Seismicity Sequencesa

Description of Criteria Parameter Section

1 Episodes of changes in injection rates and seismic r, Δt 4.3

activity above MT are associated in space and time.

2 The probability that the number of events above MT Ppoi 4.4

part of the background seismicity is low. This

probability is computed for events above MT within

r, and Δt based on the background rates within the region.

3 The probability that episodes of changes in injection Pran 4.5

rates coincide with earthquakes above MT by chance

is low, given the local injection and seismic activity.

4 The seismicity rate is significantly higher after, R 4.6

compared to before an episode of injection rate change.

Seismicity rate changes are determined using the

R statistic of Felzer and Brodsky [2005] and van der Elst and Brodsky [2010].
aA detailed description of each criteria and connected parameters can be found in the sections listed in the last

column. A step-by-step summary of the algorithm is provided in section 4.7 and in a flow chart in the supporting
information.

to as “Objective Induced Seismicity Correlation (OISC) Method.” The main concepts of the method are
summarized in the following table (Table 1):

4.2. Location and Onset of Injection Rate Changes
First, we specify a suite of targets for the OISC method including a wide range of injection rate thresholds
and two different types of injection activity. The latter include a gradual and an abrupt increase in V̇inj. In the
following, the specific types of injection activities are referred to as type a (gradual) and type b (abrupt)
triggers, respectively (Figure 5). We use the term “trigger” to highlight the potential seismogenic conse-
quences of specific types of injection operations, although not every trigger is associated with seismicity or is
expected to result in seismicity given the many injection wells and modest seismic activity. The onset for each
theoretical trigger was determined after smoothing the injection data with a five-point (5 months) median
filter, to remove high-frequency fluctuations and isolated spikes. To avoid multiple considerations of the same
trigger as a result of the median filtering, we required a separation of at least 5 1/2 months between each
onset. The onset of a gradual, type a trigger is defined as the month when injection rates exceed a thresh-
old value, V̇th, following a monotonic increase in V̇inj over at least 3 months. The onset of an abrupt, type b
trigger is defined as the month after a sudden increase in V̇inj by a value above V̇th. For each disposal well in
Kern county, we determined the onset of all types a and b triggers for a wide range of injection thresholds
and test for short-term correlations with nearby seismicity as outlined in the following sections.

Figure 5. Example of injection rates at a WD well that can be categorized into two type a triggers and one type b
trigger. Type a triggers are defined as a gradual increase in V̇inj, whereas type b triggers are defined as an abrupt in
monthly injection rates (see text for details).
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Figure 6. Seismicity density of stacked, candidate-induced earthquake sequences, 300 days before and after injection
rate peaks of wells with the highest spatial-temporal correlations of the initial analysis scheme. The background seismic
activity is highlighted by black markers, possibly induced events by green dots as well as red circles (M> 3) and
rectangles (M>4). The criteria for initial candidate event selection are described in section 3 . The ML4.2 event close to
Lh (see Figure 4) is easily recognizable at the origin of injection.

4.3. Physical and Observational Constraints on Space-Time Windows
Induced seismic events occur predominantly within a limited space-time window from the injection
operations. The extent of this window is governed by the underlying physical processes which include, for
example, poroelastic stresses and pore pressure perturbations. Here we assume that the size of the space
window is related to the time window by an underlying diffusive process via the following equation [e.g.,
Shapiro et al., 1997]:

r =
√

4𝜋DΔt, (1)

where r is the distance from the wellhead, Δt is the maximum extent of the time window, and D is hydraulic
diffusivity. Here we chose a value of D=2 m2/s providing an upper limit for the injection-affected area based
on published values which generally range between 0.2 and 1 m2/s [e.g., Shapiro et al., 1997; Hainzl and
Ogata, 2005].

The maximum time window for declaring an association between a trigger and seismicity can be guided by
background seismicity rates (see section 4.4) and empirically observed differences in seismicity density before
and after trigger onset. To this aim, we stacked and centered the seismicity sequences from the exploratory
data examination at the month of peak injection and computed seismicity density variations as a function
of time and epicentral distance from injections (Figure 6). The seismicity density was determined using a
Gaussian smoothing kernel with a width of 3 km∕month. The highest densities occur in close temporal
proximity of episodes of injection rate changes. Based on these seismicity density estimates, we selected an
upper limit for the time window of interest ofΔt = 110 days. Using this value and equation (1), we determined
a maximum distance from injection of r = 15.45 km.

4.4. Background Rates, Poisson Probability, and Statistical Constraints on Space-Time Windows
The OISC method includes three statistical measures that reveal the strength of correlations between episodes
of injection rate changes and earthquakes above MT. These measures correspond to criteria 2–4 in Table 1.
The first statistical measure reveals whether the number of events above MT conforms to the number of events
expected from a stationary Poissonian process with constant rate 𝜆̇0 within a specific region. To compute 𝜆̇0,
we declustered the earthquake record following Gardner and Knopoff [1974], assuming that earthquake
occurrences with aftershocks removed are independent in time. The probability, Ppoi, of k earthquake occur-
rences within a given space-time-magnitude window is then given by

Ppoi(k; 𝜆̇0) =
(𝜆̇0SΔt)ke−(𝜆̇0SΔt)

k!
, (2)

GOEBEL ET AL. INDUCED SEISMICITY CENTRAL CA 7
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where k is the number of candidate events above MT, S (= 𝜋r2) and Δt are the space/time window of interest
and 𝜆̇0 is the rate of independent main shocks within S over the duration of the seismic record (here 37 years).
Since the removal of aftershocks is not a unique process [see, e.g., van Stiphout et al., 2012], we examined the
influence of main shock-aftershock clustering on Ppoi. The values of Ppoi changed only marginally for clustered
versus declustered catalogs as a result of comparably low seismicity rates above MT within the study area.
While aftershock clustering is of minor influence in our study, it may have to be considered in other regions.

According to equation (2), an identifiable departure from the background seismicity due to a seismicity rate
increase requires that 𝜆̇0SΔt ≪ k. Combining this with the relation between space and time window sizes
given in equation (1), we obtain the following constraint: Δt2 ≪ k∕(𝜆̇04𝜋D). We determine an upper limit
on the time window size, Δtmax, for which this constraint is satisfied even when dealing with very few events
(very small k):

Δt2
max ≪

1
𝜆̇04𝜋D

. (3)

Equation (3) results in Δtmax = 230− 540 days for observed variations in background seismicity rate between
0.018 and 0.098 1

km2yr
. This rationale further supports that the choice of Δt = 110 days in the previous section

is suitable to establish significant results considering the observed variations in 𝜆̇0 within the study region.
For regions with lower background seismicity rates such as the central and eastern U.S. even higher values of
Δt can yield significant results.

4.5. Probability of Random Spatial-Temporal Coincidence of Injection and Seismicity Rate Variations
The second statistical test evaluates the null hypothesis that the short-term episodes of injection rate change
and seismicity above MT are a result of random coincidence. This test is warranted because seismicity rate
changes are frequent and may be a result of natural triggering processes. The probability, Pran, that injection
and seismic activity coincide by chance depends on the length of the time series (N), the total number of
months with detected events above MT (K) within Δt, the number of type a or type b triggers (n), and the
number of candidate-induced sequences (x) can be determined from a hypergeometric distribution:

Pran(X = x) =

(K
x

)(N−K
n−x

)

(N
n

) . (4)

The hypergeometrical distribution expresses the probability of obtaining x successes by simultaneous
drawing n outcomes from a population that contains N members and a total of K successes. Here success
is defined as a month associated with at least one seismic event above MT within the space-time window
constrained by r and Δt. For low injection rate thresholds, both n, and consequently, Pran are expected to be
large. In other words, if many different months within a time series are selected as triggers, the probability
of one of these months being associated with seismic activity by chance will be large (depending on the
overall observed, seismic activity). To avoid erroneous association of triggers and nearby seismicity (i.e.,
to reduce false detection) a restrictive threshold was chosen a priori and applied to the whole data set.
Pran generally depends on the overall variability and duration of injection activities as well as the seismicity
rates, 𝜆̇ within a region. Using a 95% confidence level, we can reject the null hypothesis that the observed
correlations are a result of random coincidence if Pran < 0.05. This test also shows that an a priori definition
of trigger criteria prevents subjective associations of injection activities with seismicity based on limited time
series (see, for example, Figures S1 and S2 in the supporting information).

4.6. Seismicity Rate Changes and Significance
The last statistical test identifies seismicity rate increases and evaluates whether a particular increase is sig-
nificant given the overall rate variability within a particular region. To this end, we employed the R statistic by
Felzer and Brodsky [2005] and van der Elst and Brodsky [2010] which measures the average, relative change of
time interval lengths between a trigger and two seismic events, i.e., the last before and first after its onset:

R =
t2

t1 + t2
, (5)

where t1 and t2 are the time intervals between the trigger and the two earthquakes as shown in Figure 7.
The determination of the R statistic for a region incorporates information about the changes in spatial
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Figure 7. Sketch of the time interval ratio computed from the periods between the trigger onset and the last
earthquake before and after.

seismicity clustering, which we implemented analogous to Felzer and Brodsky [2005] by discretizing the
trigger surrounding area into 0.02∘ × 0.02∘ grid nodes. For each node, we determined the corresponding
R value. We then computed the mean value over all nodes, R and confidence bounds from bootstrap
resampling of all R values (see van der Elst and Brodsky [2010] for more details).

If no events are recorded before or after a trigger, only the minimum or maximum R value for a specific
node is known. To diminish the statistical bias caused by catalog finiteness, we drew R values from random
uniform distributions for nodes with missing events. If no event is recorded before the trigger, we determined
a random R value with a lower bound which is a function of the catalog length before the trigger. If no event
is recorded after the trigger a random R value was determined, bounded by the catalog duration after the
trigger onset.

Values of R below 0.5 indicate that a trigger has on average advanced the timing of the following seismic
events, corresponding to an increase in seismicity rates, 𝜆̇. The R ratio requires no specific time binning and
relative changes within long time intervals and large areas can be detected which is important considering
the expected temporal delay of earthquake triggering governed by diffusive processes. We tested the per-
formance of the R statistic on synthetic catalogs from nonstationary Poisson processes with step increase in
background rates and main shock-aftershock clustering according to an epidemic-type aftershock sequence
model [e.g., Felzer et al., 2002]. Our tests confirmed that the R statistic reliably detects rate changes even if
these are only fractional changes of the original rates. For example, a step increase in rates by a factor of 1.5
results in R ≈ 0.43 which can reliably be identified relative to the background rate variations of an earthquake
catalog with independent origin times (see Figure S3a in the supporting information). The synthetic tests also
highlight that Poissonian and aftershock-dominated earthquake catalogs display high statistical variations in
rates so that the significance of R values has to be established relative to the overall observed rate variations
within a specific region. To this aim, we computed the significance level, p of R, by drawing trigger onsets
from a uniform random distribution over the catalog period (see supporting information section 3 for more
details). The p value shows how significant a rate increase is given the overall rate changes in a region.

4.7. Summary of Steps and Thresholds Involved in the OISC Method
The OISC method, which can be applied to any region for which complete data sets of injection rates and
seismicity are available, involves six main steps. These steps are summarized in the following (see also the flow
chart in section S2 of Text S1 in the supporting information):

1. Define a trigger criterion, i.e., a specific type of injection rate change. For each type of trigger, search over
parameter space of injection thresholds and determine onset times for each well and threshold.

2. Define a maximum time window, Δt, based on background seismicity rates and equation (3) and cor-
responding maximum distance, r (equation (1)), for the association of seismicity with injection activity.
For each trigger in (1), identify if seismicity with events above MT occurs within distance r from the well and
time window Δt of the trigger onset.

3. For each trigger satisfying the criteria in step (2), compute Poissonian probability using the background
seismicity rates and equation (2).

4. Compute the probability, Pran, that injection and seismic activity coincide by chance using equation (4)
5. Compute the R statistic and evaluate the significance, p, of rate changes relative to trigger onsets.
6. Evaluate if earthquake sequences are likely induced based on statistical measures computed in

step (3) to (5).

In the following, earthquake sequences are inferred to be induced if Pran< 0.05, Ppoi< 0.05, the upper
confidence of R is below 0.5, and the statistical significance of R is below 0.15, i.e., R plots within the 15th

GOEBEL ET AL. INDUCED SEISMICITY CENTRAL CA 9
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Figure 8. Number of wells that show (left) type a and (right) type b triggers. The total number of WD wells is ∼1400
(red dashed line). The number of injection sites that also exhibit nearby seismic activity is highlighted by black,
dashed curves. The number of injection sites associated with earthquake sequences according to the OISC method are
highlighted by green curves. The dashed horizontal lines highlight the number of wells that were consistently correlated
with earthquake sequences over the widest range of injection thresholds. Note that the red dashed lines and red curves
are plotted at a different scale represented by the right y axis.

percentile of the overall observed rate changes. These threshold values were chosen conservatively and can
be adapted depending on the local background seismicity rates. We varied trigger thresholds between 10 and
600 kbbl/month for both type a and type b triggers, and repeated steps 2 to 5 for all ∼1,400 injection wells to
assess if earthquake sequences are likely induced.

An exemplary application of the OISC method to a data set in central Valley, CA is described in the supporting
information (section S3).

5. Results
5.1. Application of the OISC Method to Central California
From the total of ∼1400 WD wells in Kern County, about 1200 wells inject wastewater at rates of at least
10 kbbl/month and also high injection rates of 600 kbbl/month are frequent, observed at∼200 wells (Figure 8).
Seismicity occurs close to only a few of these wells. For example, we identified 50 wells with type a injection
activity of at least 10 kbbl/month that also were spatially associated with seismicity within the above-defined
spatial window. However, less than 20 out of 449 wells show nearby seismic activity for wells with type a
injection rates above 200 kbbl/month. Applying the OISC method to greater Kern County, we find that 2–3
injection sites with type a and 2–4 with type b triggers are significantly correlated with seismicity (Figure 8).
These wells are investigated in more detail in the following two sections.

The large-scale application of the OISC method to central California resulted in three general observations:
(1) There is little seismic activity above MT in spatial proximity to wastewater disposal sites. (2) The majority
of both low- and high-rate injectors do not trigger seismicity sequences with events above ML3. The rela-
tively modest amount of potentially injection-induced seismicity is in agreement with the lack of large-scale
seismicity rate increase after 2001 in Figure 1. (3) The likely earthquake-inducing injection sites, injected at
rates of more than 100 kbbl/month (type a triggers) or 200 kbbl/month (type b triggers).

Several of the types a and b triggers are connected to the same earthquake sequence reducing the likely
injection-affected areas to three, i.e., Lh, Kr, and Tj (Figure 9). In contrast to these three sites, injection at site Bv
was only associated with a long-term correlation between seismicity rates of small events (ML=2–3) shown
in Figure 3. The two ML3 earthquake sequences were not significantly correlated to changes in injection rates.
The value of Pran ≈ 0.16 is high and based on the R statistic no significant rate increase could be detected.
(Table 2). Thus, in the following injection at site Bv is treated separately .

The injection sites Tj, Kr, and Lh are located far apart toward the southern and eastern edge of San Joaquin
Valley and within the valley. Three injection wells are located close to the ML4.2 earthquake sequence within
the Lost Hills oil field to the northwest of the study area. This sequence occurred in 1988 and is referred
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Figure 9. Locations of injection wells with type a (black bordered triangles) and b (white bordered triangle) triggers
and nearby seismicity. Main shocks above M3 of earthquake sequences that were identified by the objective induced
seismicity correlation method are labeled according to injection site and year of trigger occurrences. Seismicity (dots)
is colored according to time after trigger onset and events above M3 are highlighted by red squares (see legend).
The orange markers highlight the region of long-term correlation close to injection site Bv. Inset: Temporal migration of
Kr85 and Kr88 seismicity sequences. Seismicity is colored according to time from trigger onsets at the closest injection
sites. Smax

H orientation is taken from Yang and Hauksson [2013]. The injection rates for wells Bv and Lh1
b

are shown in
Figures 3 and 4.

to as Lh88. The closest trigger (Lh1
b), which is approximately colocated with the main shock, was characterized

by type b injection activity in 1988. The corresponding injection and seismicity rate changes were presented
as part of the exploratory data examination in Figure 4. Although a contribution of several injection sites
during the triggering of Lh88 may be possible, the close spatial-temporal proximity between the seismicity
sequence Lh88 and the trigger Lh1

b suggest that the corresponding well was the predominant contributor to
seismic activity.

Table 2. Results of Probabilistic Assessment for Well Locations and Nearby Seismicity Sequencesa

Site Mmax
L /Mmax

w R p Ppoi Pran V̇inj (kbbl/month) ΔV̇inj (kbbl/month)

Bva00 3.1/- 0.53 (0.468, 0.583) 0.553 <0.001 0.159 23 9

Bva91 3.1/- 0.46 (0.428, 0.527) 0.210 <0.001 0.159 153 102

Krb87 3.0/- 0.43 (0.389, 0.478) 0.120 0.013 0.001 1009 881

Krb85 4.6/- 0.40 (0.352, 0.452) 0.097 0.013 0.001 1055 725

Tjb05 -/4.7 0.37 (0.300, 0.448) 0.024 0.004 0.026 352 216

Lhb88 4.2/- 0.37 (0.317, 0.421) 0.009 0.010 0.032 1186 975
aHere we list only results for the closest well to a sequence. We also show results for Bv91a and Bv00a , which did

not meet the criteria for likely induced earthquakes. Site: Injection site, type of injection activity, and year of sequence;
Mmax

L /Mmax
w : maximum magnitude within earthquake sequence; R: R statistic, lower and upper confidence in parenthesis;

p: significance of R statistic considering the overall observed rate changes within a region; Ppoi: probability of earthquake
occurrence as a function of𝜆0; Pran: probability of random coincidence of trigger and earthquake sequence; V̇inj: injection
rate at trigger onset; and 𝚫V̇inj: change in injection rate compared to month before trigger onset.
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We detected another likely induced earthquake sequence with a ML4.6 event and two nearby wells, located
to the northeast of the study area. The closest trigger, Kr1

b , stems from a well with type b injection activity
(Figure 9). In addition to being closer than trigger Kr1

a , the nearby seismicity systematically migrated away
from trigger Kr1

b in space and time (Figure 9, inset). This event migration pattern is discussed in more detail in
the following section. We identified a fourth likely induced seismicity sequence close to injection site Tj south
of San Joaquin Basin. In this case, only one injection well with type b injection activity was associated with the
earthquake sequence in 2005 (Tj05).

Table 2 shows the results for the three wells with type b injection activity, as well as for the two type a triggers
that preceded the M> 3 events close to Bv in 1991 and 2000 but where not significantly correlated with seis-
micity. Injection site Kr was connected to two M ≥ 3 earthquake sequences: a ML4.6 sequence in 1985 (Kr85)
and a ML3.0 sequence 1987 (Kr87). Because of the connected higher seismic activity the p value of the R statis-
tic is also slightly higher than for the other sites but remained below the p = 0.15 significance threshold. In the
following, we focus our analysis on the closest injection sites. These sites all showed type b injection activity.

5.2. Seismicity Migration and Timing Relative to Injection Activity
One possible difference between tectonic and induced events is the occurrence of smaller magnitude fore-
shocks which may migrate systematically away from the injection site [e.g., Bachmann et al., 2012; Skoumal
et al., 2014]. Migration patterns that largely meet these criteria were observed close to injection site Kr where
several smaller magnitude earthquakes preceded a ML3 (Kr87) and a ML4.6 (Kr85) main shocks (inset Figure 9).
The migration path extends toward an unmapped fault which is parallel to known fault traces within the
area and likely produced the 1985 ML4.6 and 1987 ML3.0 main shocks. Much of the seismicity concentrated
along this fault which was likely activated by fluid injection, starting from the closest point of the fault trace
to the injection site and migrating bilaterally along the fault. The systematic migration pattern becomes even
more apparent when plotted as a function of time and distance from Krb (Figure 10a). Most of the seismicity
connected to Kr85 and Kr87 fall within a space-time window that approximately agrees with a diffusive
process governed by a hydraulic diffusivity of D ≈ 0.6–1.2 m2/s.

The seismicity sequence Tj05, on the other hand, showed no apparent systematic migration between injection
site and the Mw4.7 main shock at the current level of catalog completeness (Figure 10b). Most of the seismicity
falls within a space-time window limited by a diffusive process with D = 1.2 m2/s, and about 140 days after
the trigger, a ML3 event occurred in close proximity to the D = 1.2 m2/s diffusion curve. We observed some
seismic activity prior to the main shock and seismicity rates increased slightly with the commencement of
fluid injection in 2005, which may be injection related or part of the generally higher background seismicity
within this region. More detailed analyses of the Tj05 events including underlying triggering processes and an
analysis of the local geology go beyond the scope of this paper but will be addressed in a subsequent study.

Systematic spatial-temporal migration relative to the injection site are pronounced for seismicity sequence
Lh88. This sequence began with the largest-magnitude event of ML4.2 within ∼1 km distance and migrated
linearly in space and time away from the injection site (Figure 10c). The seismic activity was concentrated to
the west of the well and showed a systematic migration approximately to south, possibly along a previously
unmapped fault (Figure 9).

In addition to spatial-temporal migration, we investigated the relative timing of injection and seismic activity.
The injection sites Kr and Tj exhibited a general time delay between fluid injection peaks and the following
earthquake sequences that could be characteristic of a diffusive process. This time delay is also observed
for injection site Bv which showed a long-term correlation between V̇inj and 𝜆̇ for events with ML=2–3.
Assuming that the corresponding seismicity is triggered by fluid injection in site Bv, we can use the time lag
between injection and seismicity rates to estimate the extent of the connected pore pressure perturbation
as a function of hydraulic diffusivity. To this aim, we computed the correlation coefficient between 𝜆̇ and
V̇inj for increasing radii around the well, while simultaneously inverting for the time shift that maximizes the
corresponding correlation coefficient (Figure 11). The coefficient is largest for a time lag of about 135 days
and an affected area between 6 and 12 km which could be explained by a diffusive process with a diffusivity
of D = 0.3–0.8 m2/s (see red diamond in Figure 10a).

5.3. Frequency-Magnitude Distributions of Likely Injection-Induced Earthquakes
We investigated if fluid injection activity also influenced frequency-magnitude distributions and b values of
nearby seismic events. We computed b values by using a maximum-likelihood estimate and magnitudes of
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Figure 10. Spatial-temporal migration characteristics relative to the injection sites. Injection rates are shown by blue
curves, and pore pressure diffusion curves by black dashed and solid lines. Seismicity prior to injection peaks is displayed
by gray circles. (a) Seismicity and diffusion curves for Kr85 (green circles), Kr87 (dark blue circles), and Bv (red diamond),
(b) Tj05, and (c) Lh88. Markers scale with magnitudes, and events above M3 and M4 are additionally highlighted by red
squares. Vertical error bars show the average epicentral uncertainties in the ANSS catalog, and horizontal error bars
correspond to uncertainties due to monthly reported injection rates which are mapped into the seismicity.

completeness by minimizing the fit between observed and modeled power law distributions [Clauset et al.,
2009; Goebel et al., 2013, 2014b]. We started by estimating temporal variations in b values in the proximity of
site Tj, using a sliding sample window of 150 events, thereby ensuring the same statistical significance of each
data point. The b value estimates generally show relatively strong variations between 0.9 and 1.4 before the
well became active in 2005 (Figure 12a). b values started to decrease after∼2003 with a short period of b value
increase in 2004. Although b values start to decrease before the WD well under consideration became active,
the cumulative wastewater disposal rates in the Tejon oilfield increased systematically within a similar time
frame, starting in ∼2001 [CA Department of Conservation, 2012]. The start of injection at well Tj coincided with
a further decrease in b value down to its lowest level of 0.6 during peak injection rates. The b value recovered
after V̇inj was reduced by 30% toward the end of 2005. The postpeak injection b value remained ∼0.2 beneath
average, preinjection values.
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Figure 11. Correlation coefficient (Pearson’s r) between V̇inj and 𝜆̇ for seismicity at increasing distance from the injection
site Bv. The correlations are estimated after shifting the two curves to maximize the correlation coefficient, and a
polynomial fit (blue curve) was added to highlight the trend in correlation coefficients. The average time shift within
the range of best correlation coefficients was Δt ≈ 135 ± 15 days.

We test the probability, Pb, that two different frequency-magnitude distributions originated from the same
distribution using Utsu [1999]:

Pb = e
−ΔAIC

2
−2
, (6)

where ΔAIC is the difference in Akaike Information Criteria scores for two different power law fits [Akaike,
1974]. We determined a 9% probability that the prepeak and postpeak injection frequency-magnitude
distributions originated from the same population. This probability is reduced to 0.1% when comparing
the frequency-magnitude distributions during peak injection rates (∼06–10/2005) with those after peak
injection. In addition, the b value of ∼0.6 during peak injection is significantly lower than other b value
variations observed during 1980–2011 and falls below the minimum confidence limit of the average b value
of unity (Figure 12c).

The results from temporal b value analyses of the other regions were not statistically significant because of
comparably low seismicity rates. Nonetheless, a qualitative comparison of frequency-magnitude distributions
indicates similarities between Tj, Kr, and Lh, i.e., relatively low b values of 0.6–0.7 (Figure 13) of seismic events
that followed the trigger onset. The b value estimates in Kr and Lh are based on distributions with relatively
few events resulting in high uncertainties.

6. Discussion
6.1. Statistical Significance of Detected, Likely Induced Sequences
Our results indicate that injection in four different wells likely contributed to seismic activity. These four
wells are out of a total of ∼1400 active disposal wells, of which only ∼10% showed the abrupt changes in
injection rates defined here as type b triggers. The likelihood that the described results occurred by chance is
low for several reasons. First, the probability of earthquakes with specific magnitudes to occur within a specific
space-time interval , as well as the occurrence of a specific type of injection activity (here type a or b triggers)
within a limited space-time window is generally low, resulting in a low probability of random coincidence
for the detected sequences (see Table 2). Second, the probability that the observed earthquake sequences
coincide with injection triggers by chance given the total number of triggers within the study area is
only ∼4%. This probability was estimated by taking the three detected M> 4 events relative to the total of 12
main shocks with M> 4 within the study area and creating 1000 random catalogs assuming a random uniform
distribution in space and Poissonian distribution in time.

Our study provides the first comprehensive, statistically robust assessment of likely injection-induced
seismicity within a large area containing more than 1400 injection wells. We performed an initial exploratory
data examination to identify injection patterns that could be formally parameterized for an objective,
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Figure 12. (a) Temporal b value variations (green) and corresponding standard deviations (gray) within a 15 km radius of injection site Tj between 1995 and
2011. Average b values before and after injection are highlighted by green, dashed lines. (b) Frequency-magnitude distributions and maximum-likelihood
estimates of b values for three different periods, before, during, and after peak injection. The corresponding time windows are highlighted in Figure 12a with
the same colors. (c) Distribution of temporal b value variation estimates between 1980 and 2011. The periods of low b value during injection fall outside of
the confidence limits of the average b value of unity and can thus be considered as anomalous for the region.

automated search. This guided the definition of type a and type b injection episodes. The parameters of
the search algorithm were then either fixed by statistical considerations or conservative estimates or their
values were scanned over a wide range. We searched through the entire parameter space of injection rate
thresholds for both type a and type b triggers. Moreover, some of the utilized tests such as the R statistic
are nonparametric so no “tuning” was possible. Other parameters like maximum space-time windows for the
short-term correlations are chosen as conservatively as possible given data constrains and need for statistically
significant results.

Seismicity sequences may be induced at time scales that exceed the here selected time window but will likely
be indistinguishable from the background seismicity according to equation (3). In other words, if induced
seismicity sequences occur too far from the well or too long after a trigger onset, they will be indistinguishable
from the background especially in tectonically active regions. Furthermore, a statistically significant corre-
lation between injection and seismic activity is more challenging in wells with numerous triggers. This is
partially a result of the resolution at which injection activity is recorded at present so that more precise trigger
definitions are possible, for example, when daily injection rates become available.

Our study highlights the importance of an a priori definition of trigger criteria, to objectively estimate the
seismogenic consequences of injection within an area. Other operational parameters can plausibly be used
to search for induced seismicity, (e.g., total injection volumes or net production), although, based on our
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Figure 13. Comparison between frequency-magnitude distributions of seismicity sequences that approximately
coincided with the onset of the triggers Tj05, Kr85, and Lh88. The corresponding time windows are 150, 360,
and 230 days. The b values of all three sequences are comparably low.

exploratory data examination and applying the OISC method, we find that abrupt changes in injection rates
have the largest seismogenic consequences in San Joaquin Valley.

6.2. How Frequent Are Induced Events in Central California?
Wastewater injection-induced seismic activity in central CA is rare compared to the central and eastern U.S.,
where reports of potentially induced seismicity have increased since 2011. Our results in CA highlight that
detailed knowledge of background seismicity rates is necessary for the detection of significant induced rate
changes and should also be consider when analyzing data with varying magnitude of completeness such as
temporary array deployments or U.S. transportable array data.

Apart from this study, only few reports suggested a connection between fluid injection and seismicity in
California outside of geothermal reservoirs, e.g., related to hydraulic fracturing [Kanamori and Hauksson, 1992]
or water flooding [Teng et al., 1973]. This raises questions about possibly lower seismogenic consequences of
fluid injection in regions of active faulting compared to intraplate regions. A recent statistical analysis of injec-
tion operations and seismicity rates in OK and CA suggested that specific geologic setting and stress state on
shallow faults are the main controls on induced seismicity potential [Goebel, 2015]. Each fluid injection and
resulting pore pressure perturbation probes the proximity to failure of near-surface faults within a specific
area around the injection site. A lack of large-scale injection-induced seismicity rate increase in CA could be
connected to strongly different strain rates between intraplate and plate boundary regions [Harrington and
Brodsky, 2006]. This difference may result in distinct stress states on intraplate faults, so that these faults are
more susceptible to remote triggering and injection-induced pressure changes than plate boundary regions
[van der Elst et al., 2013; Keranen et al., 2014; Goebel, 2015]. Extending our identification scheme to more areas
may help understand these differences in crustal stresses.

6.3. Induced Seismicity Classifications and Application of the OISC Method
The OISC method allows for a relative comparison between candidate-induced earthquake sequences based
on the corresponding statistical measures. These measures provide the first step toward a relative ranking of
cases of likely induced seismicity between more likely induced versus more likely tectonic. A relative ranking
based on correlation statistics will be of increasing interest with the larger number of reported, induced seis-
micity cases within the central U.S. and elsewhere and will help encompass the inherent complexities in
triggering processes. Such a ranking is included in Table 2 from least to most likely induced.

The OISC method differs in several important points from the previous work: (1) We define trigger criteria,
i.e., a type and magnitude of injection activity, a priori, and apply them to the entire data set, i.e., the ∼1400
wastewater disposal wells in Kern County. (2) Our initial observations, in agreement with many previous
studies [e.g., Hsieh and Bredehoeft, 1981; Kim, 2013; Keranen et al., 2014], suggest that the range of time
windows, focal depths, and injection-affected areas can vary strongly in different areas. As a consequence, the
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OISC method concentrates more strongly on the quality of correlations between injection and seismicity rate
changes rather than limiting the analysis to small, near-injection space-time-depth windows. (3) We designed
our method to be generally applicable based on the most widely available data sets. Consequently, we did not
include detailed modeling of expected pore pressure perturbations on near-injection faults as, for example,
suggested by Davis and Frohlich [1993]. This type of modeling requires more detailed knowledge about the
subsurface beneath each injection site. Lastly, we tested if candidate events were simply aftershocks within an
ongoing sequence, accounting for the more complex spatial-temporal clustering in seismically active regions.

In light of the difficulty to discriminate induced and tectonic earthquakes, some limitations of the OISC
method should be considered as well. The OISC method evaluates correlations between episodes of injection
rate changes and local seismicity rate changes, using the most widely available data sets. The corresponding
statistical measures provide no physical test for whether a particular earthquake sequence is purely human
induced. We have shown that the complex spatial-temporal clustering of likely induced sequences in
tectonically active regions prevents a simple binary decision of tectonic versus induced earthquakes. Instead,
a more meaningful categorization should include the relative contributions from both types of forces,
similar to studies of natural earthquake swarms [Hainzl and Ogata, 2005]. We limited the current study to
the two most plausible types of injection activity as possible earthquake triggers which were based on an
exploratory inspection of injection activity and nearby seismicity sequences. If data availability and resolution
is adequate, these types of triggers can be extended. Furthermore, the present study predominantly focused
on quantifying the strength of correlations between short-term injection and seismicity rate changes. More
restrictive distance cutoffs may be feasible in regions where local geology, hypocenter locations, and focal
depths are known to greater accuracy. The latter are poorly constrained in our study area and were thus not
included in the general identification method. More details about the focal depth estimates can be found in
section S5 in the supporting information.

6.4. Triggering Mechanisms and Expected Maximum Magnitude
Fluid injection-induced earthquake sequences are commonly attributed to a decrease in effective stress
caused by pore pressure increase on a fault surfaces [e.g., Evans, 1966; Healy et al., 1968; Raleigh et al., 1976;
McGarr, 2014]. The pore pressure perturbation is driven by a diffusive process and results in characteristic
migration patterns over small space-time windows as observed for Kr85.

To understand the seismic hazard presented by fluid injection, it is vital to estimate the expected maximum
magnitude of induced earthquake sequences. Recently, McGarr [2014] suggested a linear relationship
between the total change in injected volume, ΔV , and the expected maximum moment release, Mmax

0 , of the
largest-magnitude induced event, using the volume of injected fluid as a proxy for pressure changes in the
subsurface. In Figure 14, we show McGarr’s relationship within the context of the here identified and previ-
ously reported cases of likely induced earthquake sequences. The locations of reported induced seismicity in
Figure 14 are KTB = eastern Bavaria, Germany; BUK = Bowland shale, United Kingdom; GAR = Garvin County,
OK; STZ = Soultz, France; DFW = Dallas-Fort Worth Airport, TX; BAS = Basel, Switzerland; ASH = Ashtabula,
OH; CBN = Cooper Basin, Australia; ASH = Ashtabula, OH; YOH = Youngstown, OH; PBN = Paradox Valley,
CO; RAT1 = Raton Basin, CO; GAK = Guy, AR; POH = Painesville, OH; RMA = Denver, CO; TTX = Timpson,
TX; RAT2 = Raton Basin, CO; and POK = Prague, OK. The reported sequences include induction by hydraulic
fracturing, wastewater disposal, and geothermal reservoir stimulation [see McGarr, 2014, and references
therein]. In our study, the largest event connected to Tj05 exceeds the upper limit, Mmax

0 , indicating that
induced earthquake ruptures may extend beyond the injection-affected volume. However, the Tejon region
experienced wastewater disposal in additional wells so that the cumulative injection volume that contributed
to the creation of the largest-magnitude event may be higher.

The synthesis of previous and here identified likely induced sequences highlights a general correlation
between the maximum injected volume and resulting moment release (Figure 14). This correlation may
originate from an underlying physical connection as suggested by McGarr [2014] but may also stem from
a stochastic process related to the fractal geometry of fault networks. Smaller faults are generally more
abundant and more readily triggered. Nevertheless, larger faults may be activated as a result of increasing
injection volumes and injection-affected areas resulting in the observed correlation between injected volume
and moment release.

While some foreshocks were detected prior to larger magnitude events in sequence Kr85, seismic events
within a ∼5 km area of the injection sites are rare (see Figure 6). This may be caused by a lack of critically
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Figure 14. Total injected volume and seismic moment (for simplicity, we assume ML = Mw) of the largest-magnitude,
likely induced earthquakes compiled by McGarr [2014] (black circles) and for sequences Tj05, Lh88, Kr85, and Kr87
(squares). For completeness, we also included a ML3.1 event that occurred during peak injection close to Bv and is
labeled Bv91. We estimated injection volumes by summing injection rates over 2, 5, and 11 months prior to trigger
onsets (three different frames from left to right). The red line shows the least squares fit of the log-transformed data
and the gray line is the maximum predicted seismic moment release from McGarr [2014].

stressed faults close to the injection wells, especially for injection sites in sedimentary basins. Shallow sedi-
mentary layers store less tectonic strain energy and exhibit predominantly velocity-strengthening frictional
behavior at upper crustal conditions, resulting in low stress drops and little to no detectable seismic activity
in close proximity to the injection sites [Das and Scholz, 1983; Scholz, 1998]. On the other hand, advancing
pore pressure fronts may affect increasing areas and the probability of encountering a critically stressed fault
within basement layers or toward the edge of a basin increases, which may explain the observations related to
the likely induced sequences Kr85 and Tj05. The subsequently activated faults may not always be the closest
mapped faults depending on crustal structure, fault strengths and stress distributions. Preexisting faults and
high-permeability reservoir structures may also act as fluid conduits and may lead to localized pore pressure
increase that extends to several kilometers from the injection sites [Hsieh and Bredehoeft, 1981; Zhang et al.,
2013; Keranen et al., 2014].

Our results suggest a relatively higher triggering potential of abrupt changes in injection rates. Rapid injec-
tion rate changes prior to seismic activity have also been observed in previous studies, e.g., in Rocky Mountain
arsenal, CO, in 1965 [e.g., Hsieh and Bredehoeft, 1981] and more recently, in 2011, during wastewater injection
close to Youngstown, OH [Kim, 2013], and may indicate a contribution from poroelastic stresses during earth-
quake triggering. Poroelastic stresses are a function of the fluid density and elastic properties of the rock
matrix but also of the net change in fluid mass per unit volume [Segall, 1989]. The net change of fluid mass
is highest close to the pore pressure front which may explain the relatively localized occurrence of seismicity
close to the arrival of the initial pressure pulse observed for some of the here identified sequences.

6.5. b Value Variations of Induced Seismicity
We identified three likely induced earthquake sequences that showed anomalously low b values. Low b values
during injection activity have been reported previously for injection-induced seismicity in Ohio [Skoumal et al.,
2014], China [Lei et al., 2008], and the Geysers region, northern California [Martínez-Garzón et al., 2014]. Other
studies suggest b values to be higher for injection-induced seismicity close to injection and within the central
U.S. [e.g., Bachmann et al., 2011; Petersen et al., 2015].

Generally, variations in b value should be interpreted carefully because of the inherent uncertainties in
estimating power law exponents over a limited number of decades and from seismicity records with changing
quality over time. Moreover, a precise correlation between b value variations and other time series,
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e.g., injection rates, is complicated by different temporal resolutions. Thus, the most robust features within
our data are generally low b values during the time of peak injection rates.

Changes in b values and frequency-magnitude distributions may originate from different underlying physical
processes [e.g., Richardson and Jordan, 2002] and can also be caused by a gradual activation of fault struc-
tures [e.g., Downie et al., 2010; Goebel et al., 2013]. Low b values may mark a transition of seismic activity from
a 3-D fractal fracture network to a 2-D fault zone associated with the gradual activation of faults by increasing
pore pressures [King, 1983]. These gradual activation processes may in addition concentrate stresses at
load-bearing asperities which increase the probability of ruptures to grow to larger sizes thereby decreasing
b values below commonly observed values of unity [e.g., Wiemer and Wyss, 1997; Goebel et al., 2012, 2013].

7. Conclusions

We have developed a method to identify likely induced seismicity sequences objectively, based on correlating
short-term injection and seismicity rate changes and applied our method to Kern County, California, thereby
assessing if M> 3 earthquake sequences may have been induced by wastewater disposal. We identified four
likely induced seismicity sequences that were associated with abrupt changes in wastewater injection rates of
200 kbbl/month or more. These sequences showed events with magnitudes up to Mw4.7. We observed seis-
micity migration characteristics that are expected for triggering by pore pressure diffusion. However, we also
observed one case of injection activity for which seismicity migrated linearly in space and time, indicating
processes beyond simple, isotropic pressure diffusion. The identified, likely induced seismicity sequences
generally show low Gutenberg-Richter b values between 0.6 and 0.7, possibly related to a more gradual
fault activation process. The relative scarcity of induced seismicity detected by the OISC method and lack
of large-scale seismicity rate increase in Kern County indicates that the seismogenic consequences of fluid
injection are generally low in the area. Through an application of our method in other regions, the seismo-
genic consequences of fluid injection can be assessed at larger scales in the future. Such an assessment can
advance the understanding of dominating triggering processes and can provide an important step toward a
quantitative definition of injection-induced earthquakes and the expected seismic hazard.
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